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Abstract. The critical behaviour of the transport coefficients of the free surface of liquid 
helium above TA is studied by using the renormalisation group results of the semi-infinite 
model E, and a possible explanation for the experiment of Wiechert and Buchholz on sound 
conversion at the free surface of He I1 is given by extrapolating these results to the region 
below Ti.. 

1. Introduction 

A few years ago, an interesting experimental study of the free surface of superfluid 
helium was performed by Wiechert and Buchholz (WB) [l] who measured the reflection, 
transmission and conversion coefficients of sound waves at the surface. While their data 
outside the critical region agree quantitatively with their own theory [2], there appeared a 
pronounced deviation of the data from the theory near the &point, TA. This phenomenon 
suggested that the Onsager coefficients describing the transport across the fluid-gas 
interface have a critical anomaly at TA. 

It is well known that the critical behaviour of superfluid helium is described approxi- 
mately by the dynamic phase-transition model, termed model E by Halperin and co- 
workers [3,4]. This model was shown to be successful, at least qualitatively, in describing 
the thermal conductivity of the bulk. Therefore, we conclude that the surface of the 
system can be discussed by using the semi-infinite analogue of,the model which has a 
free surface. The aim of the present paper is to use the semi-infinite model E to study 
the critical behaviour of the transport coefficients relating to the free surface of superfluid 
helium, and propose an explanation of the deviation between the theory and the exper- 
imental data of WB. 

The outline of the paper is as follows. In D 2, we introduce the model and define the 
cumulants of the system. In § 3, we consider the renormalisation of the cumulants and 
solve the renormalisation group equations of the cumulants. In 9 4  we discuss the 
properties of the fixed points and derive the critical behaviour of the transport coefficients 
relating to the surface in the region z > 0 (t = T/TA - 1). In § 5 ,  using some assumptions, 
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we give a correction to the theory of WB, and compare the corrected results with the 
experimental data of WB. Finally, a brief summary and conclusion is given in 8 6. 

2. The model 

A semi-infinite model E is defined by the following equations 

dq/dt = -To6H/6q* - igoq6H/6m + 8 (2.lu) 

dm/dt = V2AT6H/6m + 2goIm(q*6H/6q*) + E (2.lb) 

H = H o  - 1 d"lr lox dx,  [h,m + Re(hq*)] - i d s  [hkm, + Re(hsq:)] ( 2 . 2 ~ )  

where q(x, t) is a complex order parameter of the superfluid, and the m(x, t )  is some 
linear combination of energy and mass densities, h, and h are infinitesimal applied fields 
of the bulk, and hs are those of the surface. f3 and 6 are the usual Langevin random 
forces [4]. In (2.2) CO is the so-called surface enhancement characterising the surface free 
energy. After introducing two purely imaginary response fields $(x, t) and rit(x, t ) ,  
called MSR conjugate fields [ 5 ] ,  the part probability density of the stochastic variables I$ 
and m can be written in the form 

P { q ,  q* ,  m} = constant x exp{Q} (2.3) 

+ [i$(aq/at+ roroq + ioqros(x,) - rov2q + ( ~ ~ / 3 ! ) r ~ I q l ~ q  

- ro6(x,)ax,q - h r o  - h T o S ( x , )  + ig,qm 

- igoqh,) - cc] + m A r V 2 m  + mAcV2m 

+ i&[dm/at + ArV2(h, + h",(x,) - m) 

+ 2 g o ~ m ( ~ * q c o 6 ( x , )  - q * a x , q b ( x , )  - q*V2q) 

- 2g01m(h3* + h s q * 6 ( x , ) ] } .  

For the same reason as given in [6], the Jacobian term in (2.3) is eliminated. The surface 
terms in (2.3) imply the boundary conditions 

ax.II)Ix.=o = c o v s  

a x , q * / x , = o  =coy:  ax,$*/,l=o = CO$: 

dx,$l..=o = C O $ ,  

(2.4) 

As a result of the boundary conditions the Gaussian part of Q can be diagonalised. 
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The generating functional for the connected correlation and the response functions 
are introduced as 

Z [ L ,  L , ,  I ,  Z,] = In D{i$, q, ifi, m} exp dx  d t  ( L  y + Zm) 

The cumulants of the system can be derived as follows 

I =  1 m = l  i 

N N n [-Afv2fi + kO($V - $"q*)](x,, ti) fl m ( x k ,  t k )  
= k = l  

M M 

x n[-w2fis + igO($svs - 4: V's")l(r/? tr) II m s ( r m 9  L ) .  (2.7) 
/=  1 m=l 

For example, the linear response functions of the bulk are 
R q,m (x, t ,  x', t ' )  = w$;y.O) (x, t ,  x' , t ' )  

Rq,*(r ,  t ,  r ' ,  t ' )  = w g y q r ,  t ,  r' ,  t ' ) .  

(2.8) 

(2.9) 

and the corresponding ones of the surface are 

The surface-bulk linear response functions are the responses of the stochastic vari- 
ables V(x, t )  and m(x,  t )  of the surface to the time-dependent applied fields h(x ,  t )  and 
hm(x, t ) .  They are defined as 

R, , , (x ,  t ,  r' ,  t ' )  = w$p') (x, t ,  r ' ,  t ' ) .  (2.10) 

It is convenient for the further discussion in momentum-frequency space, therefore 
we introduce the Fourier transformation in the same form as in [6], but we omit them 
for simplicity. 

3. Renormalisation and renormalisation equations 

Standard theory suggested that we may consider the perturbation expansion of the 
cumulants in the limit A +  x ,  and in the d = 4 - E space the uv-singularities can be 
absorbed into the renormalisation functions which should be introduced by considering 
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the dimensional analysis and the counterterms of Q. The ones chosen to absorb the bulk 
uv-singularities are as follows 

R $=z; 112 $ R  

A = zm 1 / 2  & R  

v = z ,  Y 

ro = p-2z,r /q = p-2ZXqm (3.1) 

Yo = p 2 Z 2 , t  

R m = Z m m  

U 0  = p & S : l Z , U  go = p & / 2 S i l g Z g  Sd = [2d-’nd12r(d /2)] -1  

where 2, (x = v ,  $, m, A,  U ,  A ,  r, t ,  g)  are the bulk renormalisation factors. The 
additional primitive uv-divergents due to the surface should be absorbed by local surface 
counterterms; we therefore introduce the renormalisation factors Z1, Zl, Z 2 ,  Z2 and Z,  
via [6 ,7]  

q, = (ZvZ1)1/27$: = z ; ” ( q l R ) s  

& = ( Z , ~ p $ f  = Z;’2($R)s 

m, = ( z , z ~ ) ’ / ~ ~ :  = Z:f’(m”), 
As = (ZmZ2)1/2&k = g;/2(AR)s 

I 
( 3 4  I C O  = pZ,c. 

For the reason that the surface cannot affect the critical properties of the bulk far 
away from the surface, we may conclude that the difference between a bulk renor- 
malisation factor of the semi-infinite system and its analogue in the infinite system is a 
finite quantity of the order O(E’) .  This conclusion has been proved exactly for the 
models A, B and C [ 6 , 7 ] ,  we therefore do not give an exact demonstration here. As a 
result of this conclusion, we can set Z,(x = v ,  $, m, A, U ,  A, r, t, g) equal to their 
analogues in the infinite system [8].  

The response and correlation functions satisfy the fluctuation-dissipation theorem 

R q , m ( t )  - Rv,m(-L) = a c , , m ( t > / a t .  (3.3) 
It follows that the bare and renormalised responses are in the same relation as the 
correlation functions 

R ~ ( - ~ c o / A ~ , x ~ , x ~ ,  u 0 ,  r o ,  CO, r,) = ZmR:(-iw/Am,xl, x 2 ,  U ,  t, c ,  r). 

(Rm)s(-im/ATrr1,r29 ~ 0 ,  ~ O , c O , r o )  = Z m 2 2 ( R ~ ) s ( - i ~ / A ~ , r l , r 2 ,  U ,  t ,c ,r) .  

(3.4) 
For the surface cases it can be written 

(3 .5)  
It has been proved that the zero-frequency limit of the response functions are static 

correlation functions [8].  This allows us to identify the Z1, Z 2  and 2, as just the same 
functions that emerge from a renormalisation procedure applied to a purely static theory. 
The static limit of the model E is just the same as the model A, therefore, the 2, and 2, 
can be read off from [ 7 ] ,  and the factor Z 2  is given by its analogue in model C [6] with a 
parameter change u0 - 3ya + u0. 

Now there are only two factors Zl and Z2 keeping unknown, but they are not 
necessary because they do not appear in the RG equations. This simply means that the 
additional primitive divergence does not depend on the dynamic properties of the 
system. 
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The relations between the bare and the renormalised cumulants are the following: 

(3.6) 2 ( N +  M )  z-(N+ N +  &+ M / 2  z-(M+ M ) / 2  w(N, N , M ,  M )  . ] R = p -  2 m 
[ wg?. N ,  M, M )  

After defining two parameters 

w = Am/r f = g 2 ( A m r )  

we can write the RG equations in the form 
(3.7) 

a a a a 
aP au I = s , c , w , f  am [p + pu - + w,-+ q*o- + ( A  + M ) q 2 / 2  - 2 ( A  + N)] 

a 
aP 

q x  = p- lnZx ,  (x  = A,2) .  

where 

d ( N  + N + A + M)/2 + 2 ( A  + f i  - d 

d ( N +  N +  A + M ) / 2  + 2 ( A  + N )  - d + 1 

( N + N # O )  
(3.10) 

( N  + N = 0) 

r ] B  = ( A  + M/2)q2 - 2 ( h  + f i .  
The transport coefficient of the bulk is defined as 

-1 a 
K b  = P -2 [ a(-io> 

0 = 0  

(3.11) 

(3.12) 

Accordingly, the other two transport coefficients related to the surface may be intro- 
duced in the same way. The corresponding one for the surface can be written in the form 

(3.13) 

and the transport coefficient describing the transport between the bulk and the surface 
is 

(3.14) 

(3.15) 
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(3.16) 

4. Fixed point and critical exponents 

The physical point of helium in the (E, n )  plane lies at E = 1 and n = 2. It means that the 
surface transition is the so-called ordinary transitions and the fixed point of c is infinite 

From [6] we know that 

where 
@ = & - [ (  n + 2)/4(n + 8)]e - [(n + 2)/(n + 8)3][8n2(n + 8) 

is given in [7]. Because the surface does not affect the critical properties of the bulk far 
away from the surface, the bulk exponent q A?; takes the same value of its analogue of the 
infinite system [8] 

c* = 32. (4.1) 

q: = 2(qr* - q,*) = (2/v)(l - Q, - v )  (4.2) 

- (n2 + 35n + 156)]e2 + O ( E ~ )  (4.3) 

? I ? = - ’  2 E .  (4.4) 
Equation (4.4) corresponds to the IR stable fixed point. Then, from (3.16), (4.3) and 

(4.4) we can write the asymptotic behaviour of the transport coefficients as follows: 

From the results given above we see that at the A-point the transport coefficient on the 
surface diverges as strongly as that of the bulk, but that one between the bulk and surface 
diverges much more strongly than that of the bulk. 

There is still another possible physical fixed point apart from the IR stable one, which 
is termed the weak-scaling fixed point [8]. If this fixed point is the physical one, the 
exponents of the transport coefficients will have some small corrections. In the present 
paper we do not consider the possibility of this point , since we only consider a qualitative 
correction to theoretical work of WB. 

Of course, the asymptotic behaviour of the transport coefficients given by (4.5) is 
only an approximate one. A non-asymptotic treatment is necessary if one wants to 
consider the calculations quantitatively. For the same reason that we have just mentioned 
above, we do not take the careful calculations about the corrections of the model E. The 
reader is referred to references [ l l ,  121 where the non-asymptotic treatments for the 
infinite models E and F are given. 

Kbs - r-066. (4.5) K b  - r-0.33 K, .-- 2-0.34 

5. Critical behaviour of the Onsager coefficients and the sound conversion below TA 

Here we want to use the results of (4.5) to explain the experimental data of WB. First of 
all, we assume that below TA the critical behaviour of Kb, K, and Kbs are still described by 
equation (4.5). This is based on a well known fact that so far the experimental work shows 
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that any thermodynamic quantity which is observable has the same critical exponent both 
above and below the critical point. Therefore, this property may be predicted to be held 
for all cases. 

In the experiment of WB [ l ] ,  a monochromatic longitudinal sound wave was normally 
incident from the vapour onto the plane separating the fluid and the vapour phases of 
helium. A deviation of the system from its equilibrium is caused by such an incidence, 
causing a mass and thermal current to emerge across the interface. According to 
Onsager's theory these currents may be formulated in the linear phenomenological 
equations: 

J M  = L M M X M  + L M E X E  

J E  = L E M X M  + L E E X E  

(5 .1)  

(5.2) 
where the LMM, LME, LEM and L E E  are Onsager coefficients and the forces XM and XE 
take the form [ 101 

X M  = / l oT i2 (T ,  - TI) 4- Ti'(fi1 - p,) 
X E  = Ti2(Fl  - Fg) 

T = T - T ,  P = P - P O  

(5.3) 

(5.4) 
where the T and ji are defined as the deviations of the temperature and the chemical 
potential from the equilibrium value: 

the subscript o refers to the equilibrium value and the indices 1 and g refer to the liquid 
and the gas, respectively. Near the TA-point the thermal conductivity between the surface 
and the bulk of the He I1 is strongly divergent, so we assume TI = T,, then we have 

J M  I: L M M X M  (5.5)  
J E  2: LEMXM. (5.6) 

Consider that at TA the system is equivalent to a system having infinite surface 
enhancement. Hence, the evaporation of the He I1 can be neglected because the surface 
acts as a 2D infinite deep potential well, and J M  describes only the mass current caused 
by the condensation of the vapour on the surface, so that LMM - K ~ ,  since the condensed 
mass is local to the surface. Accordingly, J E  describes only the transport of the latent 
heat of the condensate moving from the surface to the bulk of He 11. Thus we can write 

The incident sound wave will partly be reflected, partly transmitted as a first sound 
wave in the liquid, and partly transformed into a thermal wave travelling back into the 
vapour and a second sound wave in the liquid. We assume here that the thermal wave 
travelling back into the vapour is very weak for the reason that the thermal conductivity 
of He I1 is divergent at TA. With these assumptions we can regenerate the acoustic 
coefficients from (47)-(49) of [2] 

RGG = [1 + (Kin' + K2)22L - KlUG]/[1 f (Kin' f K2)22L + KlUG] (5.7) 

DG1= 1 + RGG ( 5 . 8 )  
TG2 = 2K122L/[1 + (Kin' + K2)22L + KlUG] ( 5 . 9 )  

that LEM - Kbs. 

where 

(5.10) 
(5 .11)  
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The parameters n', L ,  Z 2 ,  uG, pGo and heo are defined in [2] and references therein. The 
discussion given above suggests that 

(5.12) 
(5.13) 

where al, b,, a2 and b2 are factors that cannot be determined from the theory due to the 
fact that the model that we used is a phenomenological model. However, we can 
determine them by considering that when I t I 3 10-1 the WB theory [2] is correct and 
when I z 1 < lo-' the theory should be modified as far as possible. We find that if we take 
the K1 and K2 to be 

K l  = KY(1 + 0 . 1 1 ~ l - ~ . ~ ~ )  (5.14) 

Kz = 5( I (5.15) 
the theory will agree semi-quantitatively with the experimental data. In (5.14) 

- 

In figures 1 and 2 the numerical results of equations (5.7)-(5.9) are shown and a 
comparison between both the experimental data and the uncorrected theoretical results 
of WB are given. 

K1 = a l  /t /-0.34 + bl  
K2 = a2 1 t 1 -o.66 + bz I t I 

I -0.66 - I t 1 -0.34) 

KO - 1 6  (m/2zkB T o )  ' I2 is the value of K, outside the critical region. 

6. Summary and conclusions 

In the present paper, by using the renormalisation group method we have studied the 
semi-infinite model E and have derived the critical behaviour of the transport coefficients 
concerning with the free surface of superfluid helium. With these results we have given 
a phenomenological correction to the theory of WB in the critical region, and suggested 
a qualitative explanation for the results of their sound conversion experiment. 

The results of this paper is only a proposed one. First, the model that we used is not 
the exact model for the superfluid transition. A more realistic model, called model F [4] 
is required to give a quantitative description of the dynamics of the superfluid transition. 



Free-surface acoustic properties of superjluid He 8681 

- 4  -3 - 2  -1 

Loq,,,I(TA-T) i n  K 1 

Figure 2. The conversion coefficient TG2 versus the logarithm of TA - T. The crosses and the 
circles are the experimental data of WB [l]. The broken curve shows the results of the theory 
of WB [2], and the full curve shows the numerical results of equation (5.9). 

Secondly, for the more accurate description of the critical behaviour of the transport 
coefficients, a non-asymptotic treatment of the RG flow equations is necessary [ 11, 121, 
since Kb, K, and Kbs are not observable. Thirdly, and most importantly, the assumptions 
that we made in 0 5 still need to be backed up by experiment and the parameters al, bl ,  
a2 and b2 should be calculated using a more exact model or obtained from experimental 
measurements. 

the behaviour 
of TG2 cannot be described by equation (5.9) even qualitatively. This deviation may 
mean that some mechanism in the process still remains unconsidered. More exact studies 
in the future are desirable. 

Lastly, we point out that from figure 2 one can see that when 1 t 1 < 
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